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Lecture 3 
Electrical double layer (DL). Charge transfer through DL. 

In the very vicinity of an electrode surface (in the range of up to a few nanometers), 
in the diffuse double layer, the assumption of electroneutrality is not valid due to charge 
separation. Typically the diffuse double layer may be of interest when modeling very thin 
layers of electrolyte, for instance in electrochemical capacitors and in atmospheric 
corrosion problems. 

To model the behavior of the diffuse double layer, one needs to solve for the Nernst-
Planck equations for all of the ions, in combination with the Poisson’s equation for the 
potential. The combination of these equations is frequently referred to as the Poisson-
Nernst-Planck (PNP) equations. 

This example shows how to couple the Nernst-Planck equations, solved using the 
Transport of Diluted Species interface, to the Poisson’s equation, solved using the 
Electrostatics interface. 

A problem that arises when modeling the PNP equations is that of how to handle 
the boundary condition for the potential equation. In this example an assumption of a 
Stern layer with a constant capacity is used to derive surface charge boundary conditions 
for Poisson’s equation. 

The model reproduces the results of Bazant and Chu [1, 2]. 
The model geometry is in 1D (a single interval between 0 and L) and consists of one 

single domain, representing the electrolyte phase, including the diffuse double layer [3]. 
 

Boundary conditions 
The boundaries reside in the reaction plane of the electrodes on each side. The 

same electrode reaction, in which the positive ion, 𝑀𝑒!, participates, takes place on both 
electrodes. 

𝑀𝑒! +𝑒̅ = 𝑀𝑒" 
The reaction rate r (mol/(m2·s)) is 

𝑟 = 𝐾#𝐶$% exp +
𝛼#𝐹𝜙∆
𝑅𝑇 1 − 𝐾'𝐶$%!exp	 +

−𝛼'𝐹𝜙∆
𝑅𝑇 1 

where 𝐾# and 𝐾' (m/s) are the anodic and cathodic rate constants, 𝐶$% the metal 
species activity (mol/m3, constant) and 𝛼# and 𝛼' the anodic and cathodic transfer 
coefficients. 𝜙∆ (V) is the difference in potential between the metal phase, 𝜙$ (V), and 
the reaction plane: 

𝜙∆ = 𝜙$ − 𝜙 
The electrode reaction renders an inward flux for the positive ion according to 

−𝒏𝑵! = 𝑟 
on both boundaries. For the negative ion, a zero flux condition is used 
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−𝒏𝑵( = 0 
Assuming the reaction plane to be placed at the boundary between the inner and 

diffuse double layer, and with the assumption of a Stern compact layer of a constant 
thickness, 𝜆) (m), one can derive the following Robin type of boundary condition for the 
potential: 

𝜙 + 𝜆)(𝑛 ∙ ∇𝜙) = 𝜙$ 
This condition reduces to a Dirichlet voltage condition for 𝜆) = 0, that is, in the 

absence of a Stern layer. For the case of a non-zero stern layer thickness, the condition 
can be reformulated as a surface charge condition 

𝑛 ∙ (−𝜀∇𝜙) = −
𝜀𝜙∆
𝜆)

 

 
Domain Equations 

The concentrations, ci (mol/m3, 𝑖=+,-), of two ions of opposite charge (+1/-1) are 
solved for in the electrolyte phase. The fluxes (𝑁*,mol/(m2·s)) of these are described by 
the Nernst-Planck equation 

𝑵𝒊 = −𝐷*∇𝐶* − 𝑢,,*𝑧*𝐹𝑐*∇𝜙 

with 𝐷* (m2/s) being the diffusion coefficient, 𝑢,,* (s·mol/kg) the mobility, F (C/mol) 
Faraday’s constant, and 𝜙 (V) the potential. 

Assuming no heterogenous reactions in the electrolyte, the governing equations for 
the two species become: 

∇𝑵𝒊 = 0 
For the potential, Poisson’s equation states 

∇(−𝜀∇𝜙) = 𝜌 
where ε is the permittivity (F/m) and ρ the charge density (C/m3), depending on the 

ion concentrations according to: 
𝜌 = 𝐹(𝑐! − 𝑐() 

 
Cell potential equation 

The problem formulated above can now be solved for given voltages of 𝜙$ in the 
metal electrode phase for each side. Typically one grounds one electrode and specifies 
the cell voltage as V so that 

𝜙$|./0 = 0 
𝜙$|./1 = 𝑉 
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However, to solve for a given cell current density, 𝑖'%22 (A/m2), with V not known a 
priori, an additional global equation, solving for V, is used, fulfilling the condition: 

𝑖'%22 = 𝐹𝑟|./1 
 

Global concentration constrain for the negative ion 
When solving this system for a stationary solution, the negative ion concentration 

needs an additional “boot-strap” to render a stable, unique, solution. This is done by 
adding the following global constraint to the equation system: 

𝑐0𝐿 = I 𝑐(𝑑𝑥
1

0
 

where 𝑐0is the initial ion concentration (mol/m3), equal for both ions. 
The constraint assures that the total number of negative ions is preserved during 

the iterative solver process. For time-dependent simulations the constraint can be 
omitted. 

 
Dimensionless numbers and parameter values 

A number of dimensionless numbers can be derived that govern the behavior of the 
cell. The problem is solved using a parametric study for a dimensionless parameter 𝜀3 = 
(0.001, 0.01, 0.1), defined as 

𝜀3 = 𝜆3/𝐿 

𝜆3 = M
𝜀𝑅𝑇
2𝐹4𝑐0

 

where 𝜆3 is the Debye length. 
The current of the cell is defined via the dimensionless number 𝑗 =0.9, 

𝑗 = 𝑖'%22/𝑖3 
𝑖3 = 4𝐹𝐷!𝑐0/𝐿 

where 𝑖3 is the Nernstian limiting current density. 
The cathodic reaction rate constant is defined using the dimensionless number 𝑘' = 

10, 

𝑘' =
𝐾'𝐿
4𝐷!

 

The rate of the anodic reaction term is governed by the dimensionless number 𝑘5 = 
10, 

𝑘5 =
𝐾5𝐿𝑐$
4𝐷!𝑐0
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and the Stern layer thickness is set using the dimensionless number 𝛿 =0.1, 

𝛿 =
𝜆)
𝜆3

 

The dimensionless variables used in the results: 

𝑥S =
𝑥
𝐿 

𝑐̃ =
(𝑐! + 𝑐()
2𝑐0

 

𝜌S =
(𝑐! − 𝑐()
2𝑐0

 

𝜙U =
𝐹𝜙
𝑅𝑇 

 
 

Results and discussion 
Figure 1 shows the dimensionless concentration, 𝑐̃. The concentration gradients 

are steepest close to the electrodes 

 
Figure 1. Dimensionless concentration profile. 

Figure 2 shows the dimensionless charge density profile. Charge separation occurs 
close to the electrodes. For higher values of 𝜀3, the region of charge separation, the 
diffuse double layer, stretches further into the domain. This is expected since higher 𝜀3 
values effectively mean a shorter domain length 
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Figure 2. Dimensionless charge density profile. 

Figure 3 shows the potential profile. For higher values of 𝜀3 the voltage over the cell 
decreases. This is an expected result since a shorter domain length shortens the potential 
losses due to ion transport. 

 
Figure 3. Dimensionless potential profile. 
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