Lecture 3
Electrical double layer (DL). Charge transfer through DL.

In the very vicinity of an electrode surface (in the range of up to a few nanometers),
in the diffuse double layer, the assumption of electroneutrality is not valid due to charge
separation. Typically the diffuse double layer may be of interest when modeling very thin
layers of electrolyte, for instance in electrochemical capacitors and in atmospheric
corrosion problems.

To model the behavior of the diffuse double layer, one needs to solve for the Nernst-
Planck equations for all of the ions, in combination with the Poisson’s equation for the
potential. The combination of these equations is frequently referred to as the Poisson-
Nernst-Planck (PNP) equations.

This example shows how to couple the Nernst-Planck equations, solved using the
Transport of Diluted Species interface, to the Poisson’s equation, solved using the
Electrostatics interface.

A problem that arises when modeling the PNP equations is that of how to handle
the boundary condition for the potential equation. In this example an assumption of a
Stern layer with a constant capacity is used to derive surface charge boundary conditions
for Poisson’s equation.

The model reproduces the results of Bazant and Chu [1, 2].

The model geometry is in 1D (a single interval between 0 and L) and consists of one
single domain, representing the electrolyte phase, including the diffuse double layer [3].

Boundary conditions

The boundaries reside in the reaction plane of the electrodes on each side. The
same electrode reaction, in which the positive ion, Me™, participates, takes place on both
electrodes.

Me*t +e = Meg
The reaction rate r (mol/(m?-s)) is

a F¢A —a F¢A
r=K,Cye exp( aRT ) — K .Cpo+eXp ( I;T )
where K, and K. (m/s) are the anodic and cathodic rate constants, C,. the metal
species activity (mol/m3, constant) and a, and «. the anodic and cathodic transfer
coefficients. ¢, (V) is the difference in potential between the metal phase, ¢, (V), and
the reaction plane:

br=Pu — ¢
The electrode reaction renders an inward flux for the positive ion according to

on both boundaries. For the negative ion, a zero flux condition is used
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Assuming the reaction plane to be placed at the boundary between the inner and
diffuse double layer, and with the assumption of a Stern compact layer of a constant
thickness, A (m), one can derive the following Robin type of boundary condition for the
potential:

d+As(n-Vp) = ¢y

This condition reduces to a Dirichlet voltage condition for A = 0, that is, in the
absence of a Stern layer. For the case of a non-zero stern layer thickness, the condition
can be reformulated as a surface charge condition

Domain Equations

The concentrations, ci (mol/m3, i=+,-), of two ions of opposite charge (+1/-1) are
solved for in the electrolyte phase. The fluxes (N;,mol/(m?'s)) of these are described by
the Nernst-Planck equation

Ni = —Dl-VCi — um'iZiFCiv¢

with D; (m?/s) being the diffusion coefficient, u,,; (s‘mol/kg) the mobility, F (C/mol)
Faraday’s constant, and ¢ (V) the potential.

Assuming no heterogenous reactions in the electrolyte, the governing equations for
the two species become:

VNi = O
For the potential, Poisson’s equation states
V(-eVp) =p

where ¢ is the permittivity (F/m) and p the charge density (C/m?), depending on the
ion concentrations according to:

p=F(c; —c)

Cell potential equation

The problem formulated above can now be solved for given voltages of ¢, in the
metal electrode phase for each side. Typically one grounds one electrode and specifies
the cell voltage as V so that

¢M|x=0 =0
¢M|x=L =V
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However, to solve for a given cell current density, i..; (A/m?), with V not known a
priori, an additional global equation, solving for V, is used, fulfilling the condition:

leell = FTIx=L

Global concentration constrain for the negative ion

When solving this system for a stationary solution, the negative ion concentration
needs an additional “boot-strap” to render a stable, unique, solution. This is done by
adding the following global constraint to the equation system:

L
colL =f c_dx
0

where c,is the initial ion concentration (mol/m?), equal for both ions.

The constraint assures that the total number of negative ions is preserved during
the iterative solver process. For time-dependent simulations the constraint can be
omitted.

Dimensionless numbers and parameter values

A number of dimensionless numbers can be derived that govern the behavior of the
cell. The problem is solved using a parametric study for a dimensionless parameter ¢, =
(0.001, 0.01, 0.1), defined as

gD :/1D/L

ERT
2F?c,

D

where 4, is the Debye length.
The current of the cell is defined via the dimensionless number j =0.9,
J = lceu/ip
ip =4FD,cy/L
where ij is the Nernstian limiting current density.
The cathodic reaction rate constant is defined using the dimensionless number k. =

10,
K.L
ke = 4D,
The rate of the anodic reaction term is governed by the dimensionless number k,. =
10,
_ KiLcy
" 4D, c,
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and the Stern layer thickness is set using the dimensionless number § =0.1,
As

I

The dimensionless variables used in the results:

N_x
=1

é

Results and discussion

Figure 1 shows the dimensionless concentration, ¢. The concentration gradients
are steepest close to the electrodes
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Figure 1. Dimensionless concentration profile.

Figure 2 shows the dimensionless charge density profile. Charge separation occurs
close to the electrodes. For higher values of ¢, the region of charge separation, the
diffuse double layer, stretches further into the domain. This is expected since higher ¢,
values effectively mean a shorter domain length
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(cp-cm)/(2*cref) (1)
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Figure 2. Dimensionless charge density profile.

Figure 3 shows the potential profile. For higher values of ¢, the voltage over the cell
decreases. This is an expected result since a shorter domain length shortens the potential
losses due to ion transport.
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Figure 3. Dimensionless potential profile.
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